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In this paper the relationship between the reversal of magnetization and the morphology of
very fine, iron-based and highly acicular particles used in high-density magnetic recording
media is investigated. The iron-based particle referred here is of a skeleton type, which
consists of a very fine granular material; the so-called “grain”. The grain belongs to the bcc
phase and its size ranges between about 100 to 300 Å depending on usage. Therefore the
grain can be treated as a single domain particle. As the morphology of the skeleton particle
prepared for 8 m/m video-recording media is mainly determined by the grain size and the
intergrain necking, the effects on the coercivity were studied. The magnetization reversal of
a long “chain-of-spheres” which are in contact with each other over a finite area was
investigated to determine the quantitative relationship with “intergrain necking” of the
skeleton particles when a type of “exchange anisotropy”, which is proportional to the
contact area between two adjacent unit spheres, is introduced into the chain. The
symmetric fanning mode is preferential in increasing the intergrain necking. The
introduction of the exchange anisotropy can result in decrease in the coercivity with
increasing intergrain necking, this quantitatively reproduces the experimental behavior
observed for very fine, highly acicular skeleton particles of α-Fe. On the other hand, no
essential change in the behavior of the angular variation of the coercivity is induced even if
exchange anisotropy is introduced into the chain. Finally, under the present scheme, it has
been discussed as to how to interpret the experimentally-found dependence of coercivity
on grain size, where a possibility to introduce an influence of the unit-sphere size on the
characteristic constant of the exchange anisotropy is suggested.
C© 2001 Kluwer Academic Publishers

1. Introduction
In this paper, we study the experimental and theoret-
ical effects of the particle morphology of very fine,
acicular particles of α-Fe, which are prepared for
8 m/m video-recording media, on magnetization rever-
sal. As the particle morphology is very complicated,
we present a short review before describing the experi-
mentation.

A conventional method for synthesizing the pigment
of the very fine, acicular particles of α-Fe is as fol-
lows. Usually, submicronmeter-order acicular particles
of goethite with an aspect ratio of about 10 are selected
as the starting material, this is followed by dehydration,
reduction and/or oxidation under a selected chemical at-
mosphere. Due to a contact reaction under the gaseous
phase at relatively higher temperatures, agents to help
avoid interpaticle sintering are introduced onto the par-
ticle surface of the goethite to keep the acicularity of
the geometrical shape.

Although the starting material goethite, is a sin-
gle crystal that crystallographically belongs to the or-
thorhombic system, the synthesized oxide or metal par-
ticles are of a very complicated nature. As is shown in
Fig. 1, the α-Fe particles are not of the single crystal
type, but of the so-called skeleton type, this shows up
as a mosaic structure consisting of crystal grains with
size of the order of 102 Å.

It is very important to establish the quantitative re-
lationship between the pigment characteristics and the
magnetization reversal properties for high-density au-
dio/video recording-use iron-based fine acicular parti-
cles. Within this field, it is possible to find at least five
“to-be-solved-problems”. The first problem is to de-
velop a morphological characterization of the skeleton
particle of α-Fe. In particular, crystallographic identi-
fication with respect to the stacking mode of the grains
in the particle is important. The second problem is to
systematically investigate the experimental relationship
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Figure 1 A typical transmission electron microscope image showing the morphology of very fine, acicular particles of α-Fe prepared for 8 m/m video
recording media. The particle is of a skeketon type and not the single crystal type. The image shows a mosaic structure consisting of grains with size
in of order of 100 Å. The grain crystallographically belongs to the bcc phase and its shape is that of a rhombic dodecahedron. Sometimes, pores are
included in the particles themselves. Furthermore, the particles easily form local aggregates which are called “multiple” or “bundle”.

between the skeleton particle morphology and the mag-
netization reversal properties. In particular, the quanti-
tative effects of the grain size, the necking between the
grains and the volume content of the pores on the rever-
sal of magnetization are important. The third problem is
to geometrically model the skeleton-particle morphol-
ogy. In this model, it should be possible to represent the
pores of the skeleton particle. The fourth problem is to
simulate the reversal of magnetization using this mor-
phological model, from this model we need to be able
to determine how the particle morphology affects the
reversal of the magnetization. Finally, the author has
a fifth problem, which simulates the reversal of mag-
netization for the interacting skeleton particles. In this
simulation, we need to find the most important factor
affecting the mechanism of magnetization reversal in
the interacting system.

Apart from a theoretical understanding of the
experimentally-found effects of the grain size and in-
tergrain necking on the coercivity (Hc), the possible ex-
perimental and theoretical solutions for the five given
problems have been determined by the author [1–7]:

For the first problem, the author has found that

(1) The particle is of a skeleton type consisting of bcc
phase crystal grains, or so-called crystallites whose size
ranges from approximately 100 to 300 Å depending on
the preparation process used.

(2) There are, at least, two types of grain stacking
modes (Table I and Fig. 2a and b). In the first type
of stacking mode, one of the principal axes of the bcc
phase, aligns with the long axis of the acicular parti-
cle. In the second type, one of the directions normal to
{110}-planes aligns along the long axis of the particle.
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T ABL E I Two side-view images found for the particle morphology of
the acicular skeleton type of α-Fea and their possible crystallographical
orientation with the grainsb [2, 3]

aAfter much experience in observing the morphological shape of the aci-
cular skeleton particles of α-Fe, it is our understanding that the particle
morphology can be classified into two types, type-D, where the crys-
tal grains are connected in a planar-zigzag and type-S, where the grains
form a linear-like chain. In the cases, where (1) the goethite particles of
the starting materials are of the “fatter” type whose diameter is larger
than about 200 Å, or (2) the anti-sintering agents introduced onto the
particles to ensure that the acicularity of the shape consist dominantly
of Si-containing glassy compounds, or (3) the reduction is carried out
under a water-free hydrogen atmosphere, or (4) the binding between the
grains is weak, type-D particles are usually produced. In contrast, it is
empirically found that, in the cases where (1) the goethite particles are of
the “slender” type with a diameter smaller than about 200 Å, or (2) the
anti-sintering agents introduced onto the particles consist dominantly of
B-containing glassy compounds, or (3) the reduction is carried out at
relatively higher temperatures, or (4) the binding between the grains is
strong, type-S particles are usually formed. This table was reused by kind
permission of the IEEE.
bFor type-D particles, [001] is in parallel with the major long axis,
whereas in the type-S, [110] with it.

The existence of both types is being directly proven by
the microscopic electron diffraction technique.

(3) In the acicular skeleton particle, microscopic
pores exist whose size is of the same order (or smaller)
than that of the crystal grains. The presence of the pores
could be due to intergrain misfitting.

(4) The acicular particles could very easily form lo-
cal aggregates which are termed the “multiple” or the
“bundle”.

For the second problem, it was found that
(5) It is possible to experimentally describe the

skeleton-particle morphology in terms of the grain size,
intergrain necking and the intraparticle pores; these
morphological parameters strongly affected the value
of Hc. In particular, the effect of the intraparticle pores
on the value of Hc can be quantitatively explained by
our model theory described in the following point, (6).

The third and fourth problems were solved as
follows:

(6) The “chain-of-spheres” fanning model originally
proposed by Jacobs and Bean [8] can be used as a start-
ing model which is applicable to acicular skeleton type
particles of α-Fe. By the introduction of the contact

Figure 2 Morphological modeling of the acicular skeleton type parti-
cle of α-Fe. To investigate the relationship between the morphology of
the skeleton type particles and the reversal of magnetization, the author
considered that the “chain-of-spheres” as originally proposed by Jacobs
and Bean [8] could be a starting morphological model. This model rep-
resents a linear chain consisting of n spheres with the diameter, a, all
point-contacting each other (this chain is termed the Jacobs-Bean’s chain,
or JB chain or JBC). As is well known, if each sphere can be assumed
to be a dipole unit with the moment, µ, the reversal of magnetization of
a single JBC can be physically determined by the dipole-dipole type of
the static magnetic interaction among the spheres under a given external
magnetic field. The author has extended this JBC by the introduction of
a contact angle, α, between two adjacent, nearest neighbors. A contact
angle of α = 0◦ means that the chain is of an extended type, that is the
JBC. A chain where α = 60◦, corresponds to a doubled chain type and
when α ranges from 0◦ to 60◦, this provides a planar-zigzag chain. Since
the chain with a non-zero α bends and snakes locally, we call this type
of extension to the JBC the snaked JBC or SJBC. It was possible to
relate the SJBC with an α value of 0◦ and 60◦ to the skeleton particle of
type-S and type-D respectively, as described in Table I. It was assumed
that the morphological characteristics of the SJBC can be given by two
parameters, (n, and α), and also that the intraparticle pores can be math-
ematically estimated by an introduction of the unit spheres without the
dipole moment. This figure has been reused by kind permission of the
IEEE.

angle between two adjacent spheres in the chain, it be-
comes possible to correlate the chain-of-spheres with
the various types of experimentally observed particle
morphologies (Fig. 2c).

(7) The physically possible dipole conformation is
strongly dependent on the particle morphology; the
symmetric fanning of the dimer repeating unit is most
realizable when in the extended and/or planar-zigzag
type of chain, represented by the contact angles of zero
and/or a finite value less than 60◦, respectively. A mod-
ified fanning of the tetramer unit would be most likely
in the doubled chain, which is given by a contact angle
of 60◦.

Finally, for the fifth problem, extensive numerical
simulation has been carried out to obtain following
results:

(8) It has been possible to extend the model theory
described in (6) to an interacting chain system forming
an infinite regularly spaced lattice.

(9) Application of this theory shows that the forma-
tion of local aggregates as described in (4) results in
a very large lowering of Hc. Furthermore, this type of
application leds to a quantitative investigation of the
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packing fraction dependence of Hc as observed in the
highly orientated sheet material made from the pigment
of α-Fe particles described in (1–4). It is predicted that
in extremely high packing states, a “chain-of-particles”
will be formed.

(10) It is quantitatively possible to use our method to
investigate the effect of the interparticle interaction on
the angular variation of Hc as only the magnetostatic
lateral interchain interaction can affect the angular vari-
ation of Hc. Furthermore, it is strongly suggested that
a local aggregate of the type of so-called “multiple” is
unavoidably generated in a realistic system; this leads
to the angular variation of Hc with a complex and de-
viated behavior from the “coherent” particles.

In this paper, “not-yet-solved problems”, which are
related to the theoretical interpretation regarding the ef-
fects of grain size and the intergrain necking on Hc in
(5) are investigated within the framework of the long
“chain-of-spheres”, which contact each other over a
finite area. A theoretical approach to this problem was
first carried out by Ishii and Sato [9] by the introduction
of a model system consisting of two interacting “dipole
spheres” contacting each other over a finite area. Al-
though they have not used the “necking” or “sintering”
concepts, increasing the contact area in their model cor-
responds to an increase in the intersphere “necking” or
“sintering” in the sense used in this paper (hereafter,
only the term “necking” will be used to avoid unnec-
essary confusion). It was found that, (a) there was an
essential enhancement of the symmetric fanning mech-
anism in the same way as in Jacobs-Bean’s treatment
[8] and (b) that the values and the angular variations
of the nucleation field, Hn and Hc are influenced by
introducing a finite contact area. However, the “pure”
dependence of Hn, Hc and their angular variations on
the intersphere necking was not so clear because the
aspect ratio of the chain “simultaneously” and rapidly
decreases when the contact area increases in their chain.

It is now well known that the fine acicular particles
used in the high density magnetic recording media of
the present day are mainly of the type of (Co-modified)
γ -Fe2O3, CrO2 and/or α-Fe with a high aspect ratio of
about 8 or 10, or sometimes up to 15. Therefore, the ex-
tension of Ishii-Sato’s treatment to geometrically reflect
the acicularity of the realistic particle would be very
important, if we would like to know the relationship
between the morphology and the magnetic properties
of a fine, acicular particle.

2. Theoretical treatment
According to several of our previously published papers
regarding the relationship between the morphology and
the magnetic properties of a fine, acicular skeleton parti-
cle for 8 m/m video-recording use [1–7], it has basically
been shown that this type of particle can be geometri-
cally represented by the “chain-of-spheres” which was
originally introduced by Jacobs and Bean [8] known as
JBC (Jacobs-Bean’s Chain). In a JBC, each unit-sphere
is defined such that, (a) it contacts with another sphere
at a point such that they form a straight, linear chain
and (b), that it has a unit-dipole moment which inter-

Figure 3 Schematic illustration of an extended Ishii-Sato’s chain where
the component spheres with the dipole moment µ, contact each other
over a finite area [9]. η is the “necking” or “sintering” angle between
the spheres and a characteristic in the scheme. The chain where η = 0◦
corresponds to the Jacobs-Bean’s chain-of-spheres. Note that the number
of the spheres, n, in the original Ishii-Sato’s chain is 2. Therefore, in
the case of the extended chain type considered here, a new magnetic
interaction can be found between the neighboring spheres. In this chain,
because of the finite contact area between the dipole spheres, there should
be a type of “exchange anisotropy” through the contact area. To introduce
this type of exchange anisotropy into the theory, it was assumed that
the exchange interaction is proportional to the contact area. For further
details, refer to the main text.

acts with others through a long-ranged interaction of
the dipole-dipole type.

In order to theoretically estimate the effect of inter-
sphere necking on the magnetization reversal, an exten-
sion of Ishii-Sato’s treatment [9] was tried (hereafter,
referred to as the modified JBC as ISC or IS chain,
standing for “Ishii-Sato’s Chain”). Fig. 3 shows an ex-
tended ISC, where the original type consists of two
spheres. The original chain is now extended to a type
with a sphere number of (at least) 8 or 10, and takes the
morphology of the realistic fine acicular skeleton parti-
cles into account.∗,† This extended Ishii-Sato’s chain is

∗ The author should comment on two papers by Ishii and Sato. After writ-
ing the first manuscript of this paper (End of Dec. 1996), it was found
(Jan. 10th 1997) that the two papers by Y. Ishii and M. Sato [10, 11],
reference the original discussions regarding the “ISChain” with two
spheres (Ref. 9). Ref. [10] was concerning the “magnetic behaviors of
elongated-single-domain particles by chain-of-spheres model”, while
Ref. [11] concerned the “rotational hysteresis of elongated-single-
domain particles by chain-of-spheres model”. In both of these papers, a
long-sized chain-of-spheres contacting each other over a finite area had
been investigated. Our method described in Appendix C, which math-
ematically shows how to extend the ISC with two spheres is essentially
the same with their treatment. In particular in Ref. [10], they briefly
discussed an effect of the exchange interaction between the spheres,
where their exchange interaction is also proportional to the contacting
area, in the same way as we have assumed in this paper.

However, their results do not contain (a) the quantitative effect of
the anisotropy constant which estimates the “strength” of the exchange
interaction and (b) the application of the model theory to the experi-
mental behavior with respect to the dependence of Hc and its angular
variation on the intergrain necking and grain size. In particular, because
the surface structure of the industrially prepared fine acicular skeleton
particles of α-Fe is not “pure” [12], then the exchange interaction oc-
curring between the spheres must be very complicated. Therefore, a
quantitative study of the effect of the anisotropy constant is necessary.
Although the author cannot find any “priority” for the model which
treats the long-sized ISC with an exchange anisotropy, it was believed
to be worthwhile to apply this model to the experiments in order to
study the physical meaning of the size-dependence of Hc.

† The complicated properties of the particle surface of α-Fe was reported
in the author’s most recent experimental paper, “On the Reactivity of
Organic Solvents on the Particle Surface of Metal Pigment” [12].
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characterized by the “necking” angle, η, and the num-
ber of the spheres, n. Mathematical formulation of this
type of magnetization reversal of the ISC is basically
straightforward and therefore, only the simplified de-
scription of our method of how to treat a long-sized ISC
is presented here. Because, in the long-sized ISC, esti-
mation of several new types of sphere interactions are
necessary, Appendix A precisely describes the math-
ematical reformulation for the single long-sized ISC
under an external magnetic field. The geometrical char-
acterization of the ISC is given in Appendix B.

It is convenient to represent the total energy density,
εtot, of a single long-sized ISC under an external mag-
netic field as a sum of three parts:

εtot = εsphere + εintersphere + εext. (1)

The third term to the right-hand side of Equation 1,
εext, represents the interaction between the dipole on
each sphere and an external field. Therefore, only a
description of the first and second terms is necessary.
The first term, εsphere, represents the total self-energy of
the dipole distributed on each sphere. It is represented
by a linear combination:

εsphere =
n∑

i=1

εsphere(i), (2)

where each sphere’s contribution, εsphere(i) for i =
1, 2, . . . , n, can be given by

εsphere(i) = C · (sin2θi · Ps,i + cos2 θi · Qs,i
)
. (3)

C , in Equation 3 is a factor which is dependent on sphere
size, the dipole moment of a sphere and the effective
volume occupied by the chain and contains a constant
that is dependent on the unit system used. θi is the
polar angle of the dipole moment on the i-th sphere.
Ps,i and Qs,i are characteristic parameters which are
represented by a double integral whose integrand in-
cludes the complete elliptic integral of the second and
first kind, respectively (for explicit representations, see,
Equations A.2d and e in Appendix A). All {Ps,i } and
{Qs,i } for i = 1, 2, . . . , n can be numerically estimated
as a function of the intersphere necking angle, η (the
numerical values for the ISC with n = 10 are tabulated
in Appendix C). Note that {Ps,i } and {Qs,i } for i = 2,
3, . . . , n − 1 (n ≥ 3), as for Ps,2 and Qs,2 for ISC with
n = 3, are interaction parameters of the new type which
do not appear in Ishii-Sato’s original treatment.

The second term of the right-hand side of Equation 1,
εintersphere, is the contribution from the dipole-dipole in-
teraction among n-spheres and can be represented by:

εintersphere =
n∑

i=1

n∑
j=i+1

εintersphere(i, j). (4)

In Equation 4, the interaction term between i-th and
j-th sphere, εintersphere(i, j), is given by

εintersphere(i, j) = C · {sin θi · sin θ j · cos(φι − φ j )· Pm,i j

+ cos θi · cos θ j · Qm,i j }, (5)

where Pm,i j and Qm,i j are, as Ps,i and Qs,i , two charac-
teristic parameters which are represented by the double
integral whose integrand includes the complete elliptic
integral of the second and first kind respectively (for
the explicit representations, see, Equations A.3c and d
in Appendix A). All {Pm,i j } and {Qm,i j } for (i, j) =
1, 2, . . . , n can be numerically estimated as a func-
tion of η (the numerical values for ISC with n = 10
are tabulated in Appendix C). Again note that
{Pm,i j } and {Qm,i j } for (i, j) = 1, 2, 3, . . . , n with
| i − j | ≥ 1(n ≥ 3), as for Pm,23 and Qm,23 for ISC
with n = 3, are interaction parameters of the new
type which do not appear in Ishii-Sato’s original
treatment. Detailed treatment of Equation 1 to sim-
ulate the magnetization reversal process under the
parallel and symmetric fanning modes is given in
Appendix A.

In the ISC, because of the finite contact between
dipole spheres, a kind of “exchange anisotropy” should
exist through the contact area. Therefore, another term
is necessary in the energy-density expression, Equa-
tion 1. To introduce this type of the exchange anisotropy
into the theory, it was assumed that the energy of the
exchange interaction between two nearest neighbor-
ing spheres, εexch(i, j = i + 1), is proportional to the
contact area (πa2 sin2 η/4 where a is the diameter of
the sphere) and the energy due to the dipole-dipole
interaction between two nearest neighboring spheres
(εintersphere(i, j = i + 1) in Equation 1). Then, the ex-
change interaction energy can be estimated formally
as:

εexch(i, j = i + 1) = −K · sin2 η · εintersphere

(i, j = i + 1) for i = 1, 2, 3, . . . , n − 1, (6)

where K is a dimensionless constant representing the
effective “exchange anisotropy” [13]. Furthermore, as
is shown in Fig. 4 and given in Appendix C, the values of
Pm,i j and Qm,i j with j > i + 1 for i = 1, 2, 3, . . . , n − 2
tend to zero rapidly, Equation 6 can be approximated
within a negligible numerical errors by the following
equation:

εexch = −K · sin2 η · εintersphere, (7)

where εexch is the exchange energy between the neigh-
boring spheres. Since the total dipole-dipole interaction
including the exchange term apparently decreases by
the factor, 1 − K · sin2 η, in this approximation there-
fore, the total energy density, εtot, of a single long-sized
Ishii-Sato’s chain under an external magnetic field is
modified as follows instead of as in Equation 1:

εtot = εsphere + (1 − K · sin2 η) εintersphere + εext. (8)

As shown in Appendix A, the reversal of the magne-
tization of the single long-sized ISC can be quantita-
tively estimated by using the characteristic parameters,
{Ps, Qs} from the “on-sphere” dipole-dipole interac-
tion and {Pm, Qm} from the “inter-sphere” dipole-
dipole interaction. These double integrations were
numerically calculated by using a Vector Processor,
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Figure 4 Characteristic parameters, Pm (i = 1, j) and Qm (i = 1, j) as a
function of j for an ISC where n = 10 and η = 15◦. The values of Pm (i, j)
and Qm (i, j) are essentially finite between the nearest ( j = i + 1) and
next nearest ( j = i + 2) neighbors only.

VP-2100/10 of Fujitsu Ltd. The numerical accuracy
of the computation method for these integrations was
independently cross-checked using Convex-3210/50 in
the form of another type of algorithm for the compu-
tations. Appendix C provides the numerical values of
{Ps, Qs} and {Pm, Qm} for the ISC with n = 10. It was
confirmed that in the case with n = 2, this completely
coincides with the Ishii-Sato’s result [9]. From the nu-
merical estimations on these characteristic parameters
for an assumed value of (n, η), the values of Hn and Hc
and their angular variations were obtained numerically,
where two types of the dipole conformation, the sym-
metric fanning and parallel rotation mechanism in the
sense of Jacobs-Bean [8], were assumed.

3. Computation results
3.1. Hn and Hc as a function of θo and η
For the symmetric fanning and parallel rotation modes
of the dipole conformation in the ISC with n = 10, the
behaviors of Hn and Hc are shown as a function of the
aligned angle of the chain to an external field, θo, and
the necking angle, η, in Fig. 5a and b.

From these figures, it can be seen that Hn, Hc, and
their angular variations depend on the intersphere neck-
ing. These behaviors are grossly similar to those for the
ISC where n = 2, except that the enhancement region of
the symmetric fanning mode is widely extended in the
aligned and necking angles. One of the reasons for this
is presumably to keep the acicularity of the long-sized
ISC even when the intersphere necking increases.

The calculations were repeated for the ISC when
n = 3, 4 and 5, and a multi-regression analysis was then
carried out to obtain the “pure” effect of the intersphere
necking, as defined in Appendix B, on the reversal of the

(a)

(b)

Figure 5 (a) The (calculated) angular variation of the nucleation field,
Hn, and coercivity, Hc, for an ISC where the number of the spheres
n = 10 and the necking angle η = 15◦. Both the symmetric and parallel
fanning modes are taken into account. (b) Nucleation field plotted against
necking angle for an ISC where n = 10. Two cases of the aligned angle
are considered (η = 0 and 30◦). Both the symmetric and parallel fanning
modes are taken into account.

magnetization. For full results see Appendix D. Fig. 6
shows one of the results obtained, where the aligned
ISC with the effective aspect ratio of 10 in the sym-
metric fanning mode is taken into account; here, Hc
increases by less than 0.5 with the intersphere necking,
p, and then decreases with p. As far as the author is
aware, this is the first theoretical prediction regarding
the “pure” dependence of Hc on intersphere necking.
However, as will be seen, this p-dependence of Hc does
not coincide with the experimental trend due to the ne-
glect of the exchange anisotropy mentioned previously.

3.2. Effect of “exchange anisotropy”
The effect of the exchange anisotropy acting through
the contact area on the magnetization reversal was
next estimated, one of the results obtained is shown
in Fig. 7a. By increasing the exchange anisotropy, K ,
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Figure 6 Dependence of Hc on the necking factor, p, for an ISC in the
symmetric fanning mode. Note that the ISC is normalized to L/D = 10.

a drastic change in the dependence of Hc on the inter-
sphere necking is induced, the larger value of K pro-
vides a smoothed behavior of Hc with the intersphere
necking, p. In particular, K values larger than about 1
result in Hc decreasing with p.

On the other hand, Fig. 7b shows that there is “no”
essential change in the angular variation of Hc even
when the large exchange anisotropy is introduced (note
here that although in the parallel fanning mode there
is no exchange interaction acting between the spheres,
Fig. 7b formally shows the effects of K on the angular
variation of Hc in the parallel fanning mode in com-
parison with the case in the symmetric fanning mode).
This is very important when the theoretical approach
is tried under the chain-of-spheres fanning mode to ex-
plain the angular variation of Hc. This is apparently
similar to that of the infinitely long rod-shaped particle
under the curling mode of the incoherent scheme of the
reversal of magnetization [14–17].

4. Comparisons with experiments
45 different species of skeleton particles of α-Fe with an
aspect ratio of about 10 were synthesized using three
different chemical modifications of the same starting
material (goethite particle, α-FeOOH) with five differ-
ent calcination temperatures and three different reduc-
tion temperatures (see Table II). The skeleton particle
morphology could be characterized by the specific sur-
face area, the grain size and the prticle density or the
degree of intergrain necking [5]. The “pure” effect of
the intergrain necking on Hc was obtained as shown in
Fig. 8a from (a) a multi-regression analysis of the ob-
served Hc with the specific surface area, the grain size

(a)

(b)

Figure 7 (a) The influence of “exchange anisotropy” on the dependence
of Hc on the necking factor for an ISC where n = 10 in the symmetric
fanning mode. (b) Effect of “exchange anisotropy” on the angular varia-
tion of Hc for an ISC where n = 10 and η = 15◦. Note that in the case of
the parallel fanning mode, no exchange interaction occurs between the
spheres. Therefore, only the apparent behavior for this fanning mode is
shown here.

and the particle density estimated experimentally and
by (b) assuming a “normalized” morphology which is
characterized by a specific surface area of 50 m2/g and
a grain size of 160 Å, this being typical for the particles
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(a)

(b)

Figure 8 (a) The experimental dependence of Hc on the necking factor,
p, for very fine, highly acicular skeleton-particles of α-Fe. (b) Explana-
tion of the p-dependence of Hc as observed for α-Fe with a normalized
morphology by the present model with the exchange anisotropy constant,
K = 3.26. See main text.

used in 8 Å m/m video-recording. See Appendix D for
details.

Fig. 8a shows that Hc decreases almost linearly with
increase intergrain necking, the Hc of the particle with
the intergrain necking degree, p = 0 is about 1,95 kOe,
whilst when p = 1 it is about 1,30 kOe. Therefore, com-
plete intergrain necking results in a decrease of about
0.65 kOe of Hc. It should be noted that this experimen-
tal trend is obtained for a particle with a fixed specific

surface area, grain size and aspect ratio, whereas the
only variable morphological parameter is the intergrain
necking degree.

Our theoretical model was applied to explain this
experimental trend. Firstly, the introduction of an ex-
change interaction proportional to the intersphere con-
tact area was necessary to reproduce the almost linear
decrease of Hc with an increasing intergrain necking
degree, p. Secondly, a scaling from the “theoretical
p” (this being the intersphere necking degree) to the
“experimental p” (this being the intergrain necking de-
gree), was required due to the fact that the experimental
p shown in Fig. 8a was estimated in a the very sim-
ple way from the experimental data [Ref. 1 and also
Appendix B]‡. The results are shown in Fig. 8b. It is
possible to see that the present model scheme agrees
well with the experiment, if the value of the exchange
anisotropy constant, K , can be assumed to be about 3.26
and the experimental p value is given by the theoretical
p value multiplied by 5.3. This may be the first the-
oretical interpretation of the experimental dependence
of Hc on the intergrain necking for very fine, acicular
skeleton particles of α-Fe under the “chain-of-spheres”
model in the symmetric fanning mode.

5. Preliminary study on grain size
dependence of Hc

Another unsolved problem related to the very fine,
highly acicular skeleton particles used in high-density
magnetic recording media is “a dependence of Hc on
the grain size”. In the case of α-Fe synthesized from
goethite particles, it has been experimentally shown that
Hc decreases with increasing grain size, see Fig. 9a [5].

It is well known that in the traditional Jacobs-Bean’s
theory of the chain-of-speres fanning mechanism there
is no dependence of Hc on the particle size. Therefore,
an extension of this theory is necessary such that it
becomes applicable for explaining the previously men-
tioned experimental behavior. Here, we show the results
of our preliminary study on this type of problem.

The idea is based on the possibility of grain size
dependence of the parameter K , which represents the
exchange anisotropy acting through the contact area.
The value of K for the skeleton particle of α-Fe with
the specific surface area of 50 m2/g and 160 Å of
the grain size GS, was 3.26. We then tried to esti-
mate, by applying multiregression analysis, the values
of K for a skeleton particle of α-Fe with the specific
surface area of 50 m2/g and a GS of 120, 140 and
200 Å, as partly shown in Fig. 10. The values of K
thus estimated were found to be 4.34, 3.80 and 2.18,

‡ In other words, the theoretical p value underestimates the realistic
necking state, particularly with reference to the development of neck-
ing. The reason is as follows. The ISC with a finite number of spheres
forms “one-sphere-chain” if the necking angle, η, tends to π/2, be-
cause the unit spheres, except two chain-end spheres, mathematically
vanish. Then, the specific surface area of the ISC with (n, η), S(n, η)
as defined in Appendix B overestimates the corresponding value of the
real particle if η tends to π/2. Therefore, the contraction factor from
the specific surface area of the unit sphere, So to S(n, η) overestimates
the true value, which leads to an underestimation of the theoretical p.
Therefore, the scaling from the theoretical p to the experimental p is re-
quired, if the theory developed here is to be applied to the experiments.
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(a)

(b)

Figure 9 (a) The experimental dependence of Hc on crystallite size with
respect to the [110]-plane, L [110], for very fine, highly acicular skeleton
particles of α-Fe. (b) Interpretation by the present theory of the grain-
size dependence of Hc for very fine, acicular skeleton-particles of α-Fe.
Here, L [110] in Fig. 9a is replaced by GS in order to represent explicitly
the grain size.

respectively. Therefore, the dependence of K on GS
is almost “linear” in that K(GS) = 7.57−2.70 · GS
(Å)/100, this empirical formula was used to interpret
Fig. 9a. Furthermore, in Fig. 10, the experimental p
is given by the theoretical p scaled by the data fitting
parameter, p(exp) = m · p(theor), where m is a scaling
factor whose fitted formula is given by 14.9−6.00 · GS
(Å)/100.

Fig. 9b shows the result of our test where the pre-
dicted values of Hc as a function of GS for the skele-

Figure 10 Normalized Hc with two typical morphological states plotted
against p.

ton particles of α-Fe with a “normalized” morphology,
{L/D = 10, p = 0.8, SSA = 50 m2/g} were estimated
according to then ormalized formula,

Hc in µ/a3 = α · [1 − exp{−β((L/D) − 1)}]
· {1 + (a − b · p) · p},

where α = 2.5231, β = 0.4652; a = 1.3742 and b =
1.5703, as given in Appendix D, multiplied by the
experimentally estimated values of Hc for the corre-
sponding point-contacted state, which is given by the
experimental value p = 0.

As is shown in Fig. 9b, the predicted values of Hc
reproduce the experimental values of Hc as a function
of GS. However, this does “not” mean that it is a “per-
fect” theoretical interpretation of the GS-dependence
of Hc, as we had to assume an “unexpected” empirical
GS-dependence on the “ad-hoc” parameter, m. Never-
theless, we believe that a dominant part of the physical
origin of the grain-size dependence of Hc for fine aci-
cular ferromagnetic skeleton particles is due to a grain
size dependence on the exchange anisotropy parameter,
K , which is acting between the grains.

6. Discussion
Only few experimental investigations on the fourth
problem, that is to simulate the reversal of magnetiza-
tion using our morphological model in order to deter-
mine how the particle morphology affects the reversal
of the magnetization, have been carried out. Among
them, Kaneko has reported on a study of the effect of
annealing on Hc and its angular variation for alumite-
nickel thin film media [18]. It was concluded that the
increasing Hc due to annealing (from approx. 550–620
Oe as shown in Fig. 2 of ref. 19) can contribute to the
parallel rotation mode instead of the symmetric fan-
ninng due to the increase in the contact area between
adjacent grains in the skeketon particle morphology due
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to the annealing process. Therefore, in following this
conclusion, the intergrain necking apparently leads to
an increasing Hc. However, the physical situation in-
duced during the annealing process is very complicated.
In general, annealing induces crystal growth that leads
to an increasing sphere size and at the same time, the
annihilation of the pores in the skeleton particle. The
former results in a decreasing Hc, whilst the latter re-

T ABL E I I Data-base that was prepared to characterize the relationship between morphology and the reversal of magnetization for 8 m/m video-use
acicular skeleton particles of α-Fea

Cal.∗c) Red.∗d) and property of α-Fe∗e)
Surface∗b)

Code treatment Tc
◦C SSA m2/g Tr

◦C SSA m2 / g GS Å ρ g/cc p% Hc 0e Memorandom

−01 Si : 2.0 wt.% 400 117 375 68.2 160 5.18 19.3 1125 (∗ml)
−02 400 56.8 175 5.40 35.1 1335
−03 425 48.8 200 5.62 28.6 1240
−04 500 105 375 66.1 155 5.34 29.4 1310 (∗m2)
−05 400 55.9 170 5.46 45.1 1305
−06 425 50.5 200 5.69 14.1 1225
−07 600 78.7 375 60.2 150 5.47 58.9 1345 (∗m2)
−08 400 55.4 165 5.59 49.5 1345
−09 425 51.2 190 5.71 24.7 1290
−10 650 76.2 375 58.5 145 5.53 72.7 (∗ml)
−11 400 55.4 165 5.65 46.4 1470
−12 425 49.3 165 5.51 84.3 1495
−13 700 60.2 375 57.2 145 5.60 75.3 1390
−14 400 46.6 160 5.72 96.4 1525
−15 425 46.7 165 6.10 72.2 1540

−16 Si : 3.0 wt.% 400 118 375 74.3 145 5.20 22.1 1225
−17 400 65.2 165 5.06 30.9 1320
−18 425 59.9 190 5.44 0.0 1360 (∗m2)
−19 450 51.5 200 5.56 15.2 1285 (∗m2)
−20 500 111 375 71.5 150 5.33 15.8 1310
−21 400 64.7 155 5.45 29.7 1355
−22 425 60.0 185 5.63 0.0 1340 (∗m2)
−23 450 56.6 210 5.69 0.0 1305 (∗m2)
−24 600 94.8 375 68.2 140 5.46 43.7 1340
−25 400 61.9 165 5.58 16.7 1485
−26 425 59.6 165 5.70 21.9 1485
−27 450 47.7 195 5.82 32.6 1435
−28 700 65.6 375 63.0 130 5.59 79.0 1405
−29 400 55.2 150 5.71 70.7 1525
−30 425 53.0 160 5.48 75.2 1520
−31 750 48.1 425 46.1 170 5.89 76.9 1495

−32 Si : 4.3 wt.% 500 114 425 65.1 160 5.56 11.6 (∗ml)
−33 450 61.3 165 5.68 14.2 1475
−34 700 71.8 375 63.1 125 5.58 88.8 1430
−35 400 63.7 155 5.70 20.7 1480
−36 425 53.9 155 5.82 63.2 1525
−37 725 66.8 375 67.4 125 5.61 70.8 1405
−38 400 62.8 155 5.98 9.9 1490
−39 425 59.2 155 5.86 34.6 1535
−40 750 61.3 375 57.9 120 5.65 115.2 1435 (∗m3)
−41 400 63.0 140 5.77 50.6 1510
−42 425 61.0 155 5.89 23.9 1545

(∗a) : Powder of the goethite particle whose aspect ratrio and specific surface area are 10 and 86.5 m2/g, respectively was used as a starting material.
(∗b) : Silica-hydroxide gel was coated on the particle surface of the goethite to prevent an interparticle sintering during hydrogen reduction process.
(∗c) : Calcination was carried out at Tc under a nitrogen atmosphere. SSA means a specific surface area of the calcinated material that is the powder of
the modified goethite particle.
(∗d) : Reduction was carried out at Tr under a hydrogen atmosphere.
(∗e) : SSA, GS, ρ, p and Hc are morphological and magnetic parameters estimated for the reducted material:

SSA = specific surface area measured by the BET method that uses N2 gas
GS = grain size with respect to {110} of BCC phase by the x-ray method
ρ = particle density measured by a pycnometer
p = intergrain necking degree calculated. For a detail, see the text.
Hc = coercivity measured at packing degree of 10 vol.% under an external field of 10 kOe. A sample vibration magnetometer was used.

(∗m1) : Reduction process was “poor” (:that means “not completely”).
(∗m2) : Partly, abnormally-grown particles were found in the sample.
(∗m3) : Partly, an interparticle sintering was found in the sample.

sults in an increasing Hc [5]. Sometimes, interparticle
sintering is also induced during annealing, this leads
to the extremely large, decreasing Hc. This situation
can be also found for the calcination temperature ef-
fect on Hc for fine, highly acicular skeleton particles of
α-Fe (see, Table II). Here, the pore effect can be com-
pletely explained within the frame of the symmetric
fanning mode of the “chain-of-spheres” model, if, the
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intraparticle pores can be treated as an intergrain mis-
fitting [3]. Furthermore, the symmetric fanninng mode
remains preferentially in increasing the contact area
between adjacent spheres in the chain-of-spheres, as
shown in Fig. 5b. Therefore, Kaneko’s conclusion, that
the increasing Hc due to annealing contributes to the
parallel rotation mode instead of the symmetric fan-
ning mode, is a special case. Out interpretation of his
investigation is that the annihilation of the intrapores is
a possible physical factor resulting in the increasing Hc
during annealing.

Sometimes theoretical investigations regarding the
grain-size dependence of Hc for fine acicular particles
are carried out, in relation to the thermal agitation phe-
nomena of the magnetization [19]. As far as the author
is aware, this dependence of Hc has not been theo-
retically investigated, except for the micromagnetics
approach [20]. In our treatment, the definition of the
effective exchange anisotropy constant, K , is not quan-
titative. K may be expressed in terms of

∑
Ji Ji+1 and

a geometrical factor depending on the contact area and
the unit-sphere volume, where Ji is the spin of i-th
sphere. In this instance, the value of K is dependent on
sphere size. An exact estimation is now ongoing.

In trying to find a possible solution for the unsolved
part of the fourth problem, it was possible to interpret
the intergrain necking dependence of Hc of an acicu-
lar skeleton particle of α-Fe by extending Ishii-Sato’s
treatment in such a way as to include a type of exchange
anisotropy. It was also found that the grain size depen-
dence of Hc is derivable if this exchange anisotropy is
dependent on the grain size. Although this dependence
of the exchange anisotropy on the grain size is not yet
fully investigated, the effects of the intergrain necking
and the grain size on Hc are becoming a “well-defined”
behavior. As far as the author is aware, this theoretical
approach is the first of its kind in this field [10, 11].

In previous papers [6, 7], it has been shown that the
angular variation of Hc is very strongly influenced by
the presence of local aggregates such as a “bundle”
or a “multiple”. It was also found that the “apparently
curling-like” angular variation of Hc can be realized by
the presence of coexisting local aggregates where the
“lateral” dipole-dipole interaction between the chain-
of-spheres plays a dominant role in determining the
magnetization reversal process. Therefore, based on the
results obtained in the present study, it is most likely
that the experimental behavior regarding the angular
variation of Hc observed for the fine acicular skeleton
particles with relatively high degrees of the intergrain
necking [for exapmles, see our case [1] or another case
reported by Bottoni et al. [21] will be due, in the main,
to the coexistence of local aggregates.

7. Conclusions
Magnetization reversal of a long chain-of-spheres
which are in contact with each other over a finite area
was investigated in an effort to understand the quan-
titative effect of “intergrain necking” of fine, highly
acicular ferromagnetic skeleton particles (particularly
of α-Fe) consisting of the grains possible to treat as a
single domain particle.

Based on Ishii-Sato’s model of two interacting dipole
spheres which are in contact with each other over a
finite area, their treatment was directly exteded to a
long-sized chain, as increasing the intersphere contact
area corresponds geometrically to an increase in the
intergrain necking. Following this, a type of “exchange
anisotropy” which is proportional to the contact area
was introduced into the chain.

The symmetric fanning mode was preferential in in-
creasing the intergrain necking and the introduction
of anisotropy could provide a decreasing coercivity
with increasing intergrain necking. This quantitatively
reproduces experimentally observed behavior in very
fine, highly acicular skeleton particles of α-Fe.

On the other hand, no essential change in the be-
havior of the angular variation of the coercivity was
induced, even if exchange anisotropy was introduced
into the chain. Therefore, as shown in [6, 7], one of the
most important factors affecting the angular variation
of the coercivity could be a lateral interaction between
the chains by the means of two dimensional local ag-
gregates such as a “multiple” which unavoidably exist
in the realistic fine acicular particles system.

Finally, under the present scheme, it has been dis-
cussed as to how to interpret the experimental depen-
dence of the coercivity on the grain size, where a possi-
bility to introduce an influence of the unit-sphere size on
the characteristic constant of the exchange anisotropy
is suggested.

Appendix A: Extension of Ishii-Sato’s
formulation to the long chain
The formulation on the reversal of the magnetization
for the single long-sized Ishii-Sato’s chain (ISC), which
consists of the dipole spheres of n, is briefly reviewed.
In order to simplify the understanding of the problem,
here the same units, and, as similar notations as possible
to those given by Ishii and Sato are used.

Total energy density
It is convenient to represent the total energy density, εtot,
of a single long-sized ISC under an external magnetic
field, Hex, as the sum of three parts:

εtot = εsphere + εintersphere + εext. (A.1)

In the Cartesian co-ordinate system, without a loss of
generality, it is possible to assume that the major axis of
the ISC is located on the O–z axis and that the external
field is applied in the direction of (θo, φo) in polar co-
ordinates. Because of the geometrical symmetry of the
ISC, it is also possible to assume an φo of zero, which
means the external field is located on the (z, x)-plane,
see Fig. 3 in the text. The value θo is the aligned or
orientation angle of the ISC. If we assume the existence
of a non-magnetic, thin layer on the surface of the unit
sphere of which the ISC consists, these three terms can
be formulated as follows.

On-sphere interaction term, εsphere
The first term on the right-hand side of Equation A.1,
εsphere, represents the total self-energy of the dipole dis-
tributed on each sphere and is represented by the linear
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combination:

εsphere =
n∑

i=1

εsphere(i). (A.2a)

Each sphere contribution, εsphere(i) for i = 1, 2, . . . , n,
can be given by:

εsphere(i) = C · (sin2 θi · Ps,i + cos2 θi · Qs,i ), (A.2b)

where

C = M2 · r3/(µo · V ), (A.2c)

Ps,i = (21/2/4)
∫ qi

pi

dθ

∫ qi

pi

dθ ′( sin θ · sin θ ′/β1/2
o

)
· {(βo − sin θ · sin θ ′)· K

(
α1/2

o

) − βo · E
(
α1/2

o

)}
,

(A.2d)

and

Qs,i = (1/21/2)
∫ qi

pi

dθ

∫ qi

pi

dθ ′( sin θ · cos θ

· sin θ ′ · cos θ ′/β1/2
o

) · K
(
α1/2

o

)
, (A.2e)

with

αo = α(η = π/2) = 2 sin θ · sin θ ′/βo,

which comes from the definition of α(η):

α(η) = 2 sin θ · sin θ ′/β(η), (A.2f)

and

βo = β(η = π/2) = 1 − cos(θ + θ ′),

which comes from the definition of β(η):

β(η) = 1 − cos(θ + θ ′) + 2( j − i) · cos η

× (cos θ − cos θ ′) + 2( j − i)2 · cos2 η.

(A.2g)

Here, r is the sphere radius (a/2) and V is the total
volume of the ISC under consideration. The lower and
upper limits with respect to θ or θ ′, pi and qi , of double
integrations which appear in Equations A.2d and e are
defined as:

pi = 0 for i = 0 and n,
(A.2h)= η for i = 2, 3, . . . , n − 1,

and

qi = π − η for i = 1, 2, . . . , n, (A.2i)

respectively.
K and E in Equations A.2d and e are the complete

elliptic integral of the first and second kind respec-
tively. Therefore, all {Ps,i } and {Qs,i } for i = 1, 2, . . . , n
can be “numerically” estimated as a function of η

(Appendix C). Here, {Ps,i } and {Qs,i } for i = 2, 3, . . . ,
n − 1 (n ≥ 3) are interaction parameters of the new
type which do not appear in the original Ishii-Sato’s
treatment.

Inter-sphere interaction term, εintersphere
The second term on the right-hand side of Equation A.1,
εintersphere, is the contribution from the dipole-dipole in-
teraction among n-spheres and can be represented by

εintersphere =
n∑

i=1

n∑
j=i+1

εintersphere(i, j). (A.3a)

The interaction term between i-th and j-th sphere,
εintersphere(i, j), is given by

εintersphere(i, j) = C · {sin θi · sin θ j · cos(φι − φ j) · Pm,i j

+ cos θi · cos θ j · Qm,i j }, (A.3b)

where

Pm,i j = (1/21/2)
∫ Si

ri

dθ

∫ S j

r j

dθ ′ (sin θ · sin θ ′/β1/2)

· {(β − sinθ · sin θ ′) · K (α1/2) − β · E(α1/2)},
(A.3c)

and

Qm,i j = 21/2
∫ Si

ri

dθ

∫ S j

r j

dθ ′

× (sin θ · cos θ · sin θ ′ · cos θ ′/β1/2) · K (α1/2),

(A.3d)

Here, although the integrands which provide {Pm,i j }
and {Qm,i j } are apparently the same as those which
give {Ps,i } and {Qs,i }, the lower and upper limits with
respect to θ or θ ′, ri or r j and si or s j , of the double
integrations which appear in Equations A.3c and d are
defined as follows:

ri = 0 for i = 0,

= η for i = 2, 3, . . . , n, (A.3e)

and

si = π − η for i = 1, 2, . . . , n − 1,
(A.3f)= π for i = n,

respectively. Hence, we obtain a symmetry with {Pm,i j }
and {Qm,i j }:

Pm,i j = Pm, j i and Qm,i j = Qm, j i . (A.3g)

All {Pm,i j } and {Qm,i j } for (i, j) = 1, 2, . . . , n can
be “numerically” estimated as a function of η (Ap-
pendix C). Note again that in Equations A.3c and d,
{Pm,i j } and {Qm,i j } for (i, j) = 1, 2, 3, . . . , n with
/i − j /≥ 2 (n ≥ 3) are interaction parameters of the
new type which do not appear in Ishii-Sato’s treatment.

As is discussed in the text, the introduction of an ex-
change interaction into the ISC leads to, for example,
from Pm,i j to P (eff)

m,i j which is estimated by Pm,i j multi-
plied by (1 − K · sin2 η), where K denotes the effective
strength of the exchange interaction.
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Interaction term with an external field, εext
The third term on the right-hand side of Equation A.1,
εext, is represented by the linear summation over the
interaction between the dipole on each sphere and an
external field:

εext = −M · Hex

n∑
i=1

vi (cos θi · cos θo

+ sin θi · cos φi · sin θo), (A.4)

where vi is the volume fraction of the i-th unit sphere to
the total volume of the ISC. It is very easy and straight-
forward to confirm that Equations A.2–4 coincide com-
pletely with Ishii-Sato’s treatment when n equals 2.

Reversal of magnetization
The path of the reversal of the magnetization, (θ (Hex),
φ(Hex)), is determined by the well-known variational
conditions:

δεtot/δθ = 0, δεtot/δφ = 0 and(
δ2εtot

/
δθ2) · (δ2εtot

/
δφ2) = (

δ2εtot
/
δθδφ

)2
.

(A.5a)

under

δ2εtot/δθ
2 ≥ 0 and δ2εtot/δφ

2 ≥ 0. (A.5b)

The critical field of an irreversible rotation of mag-
netization, Hcr, can be directly estimated by (θt , φt )
which satisfy critically Equations A.8a–e, as a function
of (θo; n, η), as is shown in the following.

Symmetric fanning scheme
Our precise investigation regarding the relationship of
dipole conformation with the reversal of the magneti-
zation for a single snaked Jacobs-Bean’s chain (snaked

T ABL E A I Calculated morphological and characteristic parameters for ISC where n = 10 : fl/ lo, (L/D)eff
∗a), p, Ps (i) and Qs (i)

Morphological parameters Characteristic parameters

η, deg. fl/ lo (L/D)eff
∗a) p i Ps (i) Qs (i) Memo.

0 1.0000 10 0 1 0.6894 8741 0.6908 3240 *b)
15 0.9693 9.6930 0.0972 1 0.6883 8484 0.6334 8011 *c)

2 0.6878 1838 0.5743 5663 *d)
30 0.8794 8.7940 0.3325 1 0.6739 7925 0.5286 9677 *c)

2 0.6651 0048 0.3411 7094 *d)
45 0.7364 7.6340 0.5922 1 0.6248 2358 0.4677 2636 *c)

2 0.5849 5309 0.1388 4643 *d)
60 0.5500 5.5000 0.7826 1 0.5289 8793 0.4868 2866 *c)

2 0.4247 2810 0.0319 2221 *d)
75 0.3329 3.3290 0.8202 1 0.3965 2358 0.5517 4243 *c)

2 0.2032 9705 0.0020 7717 *d)
90 0.1000 1.0000 0 1 0.2549 7313 0.5889 4273 *c)

2 0 0 *d)

*a : (L/D)eff is given by n · fl/ lo.
*b : Because of chain symmetry, Ps (i) = Ps (1) and Qs (i) = Qs (1) for i = 2, 3, . . . , 10.
*c : Because of chain-end symmetry, Ps (10) = Ps (1) and Qs (10) = Qs (1).
*d : Because of chain symmetry, Ps (i) = Ps (1) and Qs (i) = Qs (1) for i = 3, 4, . . . , 9.

JBC or SJBC, where a contact angle between two near-
est neighbors of the unit spheres in the chain-of-spheres
is introduced) has shown that the symmetric fanning in
the sense of Jacobs-Bean is most reasonable if the con-
tact angle is less than about 55◦. In ISC, the symmetric
fanning is defined as:

θi = θ and φι = (−)iφ for i = 1, 2, . . . , n,

(A.6)

this leads to the simplified expressions of three terms
of the total energy density:

εsphere(i) = C · {sin2θ · (Ps,i − Qs,i ) + Qs,i
}
, (A.7a)

εintersphere(i, j) = C · {sin2θ · (cos λi jφ · Pm,i j − Qm,i j )

+ Qm,i j
}
, (A.7b)

and

εext = −M · Hex

n∑
i=1

vi (cos θ · cos θo

+ sin θ · cos φ · sin θo), (A.7c)

where

λi j = (−)i−1 − (−)( j−1). (A.7d)

Therefore, Equations A.5a–e give rise to the following
equations:

Fa =
n∑

i=1

(Ps,i − Qs,i )

+
n∑

i=1

n∑
j=i+1

[(cos λi jφ · Pm,i j − Qm,i j )

+ (1/2)λi j · {sinλi jφ/sinφ} · {(tanθ/tanθo)

− cos φ} · Pm,i j ] = 0, (A.8a)
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(µo/M) · Hcr = −(R3/V ) · (sinθ/sinθo)

×
n∑

i=1

n∑
j=i+1

λi j · {sinλi jφ/sinφ} · Pm,i j , (A.8b)

Gt = 2
n∑

i=1

(Ps,i − Qs,i ) · cos 2θ

+ 2
n∑

i=1

n∑
j=i+1

(cos λi jφ · Pm,i j − Qm,i j ) · cos 2θ

+ (V/R3) · (µo/M) · Hex · (cos θ · cos θo

+ sin θ · sin θo · cos φ) ≥ 0, (A.8c)

Ht =
n∑

i=1

n∑
j=i+1

λ2
i j cos λi jφ · sin2 θ · Pm,i j

+ (V/R3) · (µo/M) · Hcr

· sin θ · sin θo · cos φ ≤ 0, (A.8d)

and

Fb = Gt · Ht +
{

n∑
i=1

n∑
j=i+1

λi j · sin(λi jφ) · sin2θ · Pm.i j

+ (V/R3) · (µo/M) · Hcr · cos θ · sin θo · sin φ

}2

= 0.

(A.8e)

Formally, for the ISC with a specified (n, η), it is pos-
sible to use Equation A.8a to represent φ as a function
of θ and θo : φ = φ(θ, θo; n, η). Then, θB and φB which
satisfy Equation A.8e can derived as a function of θo:

θB = θB(θo; n, η) and φB = φB(θo; n, η), (A.8f)

respectively. Furthermore, the critical values, θm and
φm , which critically, simultaneously satisfy Equa-
tions A.8c and d, are also derived as a function of θo:

θm = θm(θo; n, η) and φm = φm(θo; n, η),

(A.8g)

If θo ≤ θm , then the discontinuous transition point due
to the irreversible rotation, θt and φt , is determined
as minimum of {θB or θm}, and its corresponding φ,
respectively. If θo ≤ π/4, Hn and Hc are given from
Equation A.8b by:

Hn = Hc = Hcr (θt , φt , θo; n, η). (A.8h)

However, if θo > π/4, then Hn is given by Equa-
tion A.8h, while Hc is essentially given by the coher-
ent rotation. Furthermore, in the case of θo > θm , no
symmetric fanning mode of the dipole conformation is
possible for the reversal of the magnetization. It can
be directly, but very tediously confirmed that Equa-
tions A.8a–e give exactly the same result as that of
Ishii and Sato when n equals 2.

Parallel fanning scheme
The parallel fanning in the sense of Jacobs-Bean’s
scheme is very simply defined as:

θi = θ and φι = 0 for i = 1, 2, . . . , n. (A.9)

for the external field applied on (z, x)-plane.
Basically, in the SJBC, this incoherent irreversible

rotation of the magnetization is not realized because
of its higher energy state. However, it is instructive to
check what parallel fanning does induce in the ISC.
Using Equation A.9,

2 tan(θt + θo) = tan 2θt , (A.10)

and

(µo/M) · Hcr = (µo/M2) · Ku · sin 2θt/ sin(θt + θo),

(A.11)
where

(µo/M2) · Ku = (R3/V ) ·
{

n∑
i=1

(Ps,i − Qs,i )

+
n∑

i=1

n∑
j=i+1

(Pm,i j − Qm,i j )

}
, (A.12)

are very easily obtained from Equations A.5a and c.
Ku as defined by Equation A.12 is a type of anisotropy
constant in the parallel fanning. Equation A.10 means
that the transition polar angle, θt , is only obtained as a
function of θo.

In this mode of dipole conformation, Hn and Hc are
given by

Hn = Hcr,

and

Hc = Hcr for θo ≤ π/4, (A.13a)

= Hcr(θt = π/2 − θo) for θo > π/4. (A.13b)

Again, it can be directly, but very tediously confirmed
that Equations A.10–A.13 give completely the same
result as that of Ishii and Sato when n equals 2.

Appendix B: Geometrical factors which
characterize Ishii-Sato’s chain
The specific surface area, S, of ISC with n unit-spheres
whose radius, density and necking or sintering angles
are r , ρ and η, respectively, are given by

S = (3/(ρr )) · {1 + (n − 1) · cos η}/
× {1 + (n − 1) · cos η · (1 + sin 2η/2)}, (B.1)

which can easily be derived from the volume, V , and
the surface area, S, which are expressed by following
equations:

V = (4πr3/3) {1 + (n − 1) · cos η · (1 + sin 2η/2)},

(B.2)
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T ABL E A I I Calculated morphological and characteristic parameters for ISC where n = 10 : Pm (i, j) and Qm (i, j)

η, deg i j Pm (i, j) Qm (i, j) (i, j) providing the same value

0 2 1 0.1745 3943 −0.3497 0280 (3, 2), (4, 3), (5, 4), (6, 5), (7, 6), (8, 7), (9, 8), (10, 9)
3 1 0.0218 1662 −0.0436 3323 (4, 2), (5, 3), (6, 4), (7, 5), (8, 6), (9, 7), (10, 8)
4 1 0.0064 6418 −0.0129 2836 (5, 2), (6, 3), (7, 4), (8, 5), (9, 6), (10, 7)
5 1 0.0027 2708 −0.0054 5415 (6, 2), (7, 3), (8, 4), (9, 5), (10, 6)
6 1 0.0013 9626 −0.0027 9253 (7, 2), (8, 3), (9, 4), (10, 5)
7 1 0.0008 0802 −0.0016 1605 (8, 2), (9, 3), (10, 4)
8 1 0.0005 0884 −0.0010 1768 (9, 2), (10, 3)
9 1 0.0003 4088 −0.0006 8177 (10,2)

10 1 0.0002 3941 −0.0004 7883

15 2 1 0.1912 5229 −0.2732 4901 (10, 9)
3 1 0.0240 9825 −0.0355 1906 (10, 8)

2 0.1912 0413 −0.2805 5187 (4, 3), (5, 4), (6, 5), (7, 6), (8, 7), (9, 8)
4 1 0.0071 4742 −0.0101 3635 (10, 7)

2 0.0240 8771 −0.0381 9269 (5, 3), (6, 4), (7, 5), (8, 6), (9, 7)
5 1 0.0030 1636 −0.0040 5017 (10, 6)

2 0.0071 4357 −0.0115 0765 (6, 3), (7, 4), (8, 5), (9, 6)
6 1 0.0015 4464 −0.0019 4828 (10, 5)

2 0.0030 1454 −0.0048 8175 (7, 3), (8, 4), (9, 5)
7 1 0.0008 9397 −0.0010 5256 (10, 4)

2 0.0015 4346 −0.0025 0572 (8, 3), (9, 4)
8 1 0.0005 6300 −0.0006 1491 (10, 3)

2 0.0008 9337 −0.0014 5202 (9, 3)
9 1 0.0003 7719 −0.0003 7955 (10, 2)

2 0.0005 6261 −0.0009 1513
10 1 0.0002 6511 −0.0002 3852

30 2 1 0.2289 1025 −0.1340 5640 (10, 9)
3 1 0.0313 4579 −0.0164 0643 (10, 8)

2 0.2280 1506 −0.1561 3263 (4, 3), (5, 4), (6, 5), (7, 6), (8, 7), (9, 8)
4 1 0.0094 3084 −0.0034 8016 (10, 7)

2 0.0311 4104 −0.0249 4233 (5, 3), (6, 4), (7, 5), (8, 6),
5 1 0.0040 0012 −0.0007 0702 (10, 6)

2 0.0093 5482 −0.0079 3710 (6, 3), (7, 4), (8, 5), (9, 6)
6 1 0.0020 5346 0.0000 5818 (10, 5)

2 0.0039 6403 −0.0034 3263 (7, 3), (8, 4), (9, 5)
7 1 0.0011 9017 0.0002 8448 (10, 4)

2 0.0020 3359 −0.0017 7767 (8, 3), (9, 4)
8 1 0.0007 5024 0.0003 3957 (10, 3)

2 0.0011 7809 −0.0010 3511 (9, 3)
9 1 0.0005 0294 0.0003 3590 (10, 2)

2 0.0007 4235 −0.0006 5427
10 1 0.0003 5734 −0.0018 7662

45 2 1 0.2586 5153 −0.0295 8398 (10, 9)
3 1 0.0442 7180 0.0015 4355 (10, 8)

2 0.2532 4050 −0.0589 0445 (4, 3), (5, 4), (6, 5), (7, 6), (8, 7), (9, 8)
4 1 0.0141 0720 0.0029 1782 (10, 7)

2 0.0428 8383 −0.0110 9211 (5, 3), (6, 4), (7, 5), (8, 6), (9, 7)
5 1 0.0061 1586 0.0024 8574 (10, 6)

2 0.0135 7108 −0.0038 9381 (6, 3), (7, 4), (8, 5), (9, 6)
6 1 0.0031 7408 0.0019 5990 (10, 5)

2 0.0058 5652 −0.0017 5904 (7, 3), (8, 4), (9, 5)
7 1 0.0018 5149 0.0015 4393 (10, 4)

2 0.0030 2977 −0.0009 3049 (8, 3), (9, 4)
8 1 0.0011 7196 0.0012 3429 (10, 3)

2 0.0017 6316 −0.0005 4823 (9, 3)
9 1 0.0007 8794 −0.0010 0397 (10, 2)

2 0.0011 1406 −0.0003 4902
10 1 0.0005 8518 −0.0117 4451

60 2 1 0.2490 1641 0.0080 6189 (10, 9)
3 1 0.0619 3860 0.0079 5398 (10, 8)

2 0.2293 6420 −0.0126 7261 (4, 3), (5, 4), (6, 5), (7, 6), (8, 7), (9, 8)
4 1 0.0228 7095 0.0051 0371 (10, 7)

2 0.0556 1399 −0.0025 4585 (5, 3), (6, 4), (7, 5), (8, 6), (9, 7)
5 1 0.0105 9225 0.0034 8242 (10, 6)

2 0.0201 8455 −0.0010 6375 (6, 3), (7, 4), (8, 5), (9, 6)
6 1 0.0059 9326 0.0025 0768 (10, 5)

2 0.0092 2869 −0.0005 2868 (7, 3), (8, 4), (9, 5)
7 1 0.0033 9154 0.0018 8391 (10, 4)

2 0.0049 1293 −0.0002 9485 (8, 3), (9, 4)

(Continued).
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T ABL E A I I (Continued).

η, deg i j Pm (i, j) Qm (i, j) (i, j) providing the same value

8 1 0.0021 7660 0.0014 6353 (10, 3)
2 0.0029 0532 −0.0001 7924 (9, 3)

9 1 0.0014 7755 0.0011 6799 (10, 2)
2 0.0018 5390 −0.0001 1639

10 1 0.0012 4092 −0.0397 6300

75 2 1 0.1741 4403 0.0045 0639 (10, 9)
3 1 0.0738 6431 0.0033 2638 (10, 8)

2 0.1280 5312 −0.0008 2717 (4, 3), (5, 4), (6, 5), (7, 6), (8, 7), (9, 8)
4 1 0.0374 5064 0.0023 4375 (10, 7)

2 0.0516 3030 −0.0001 4813 (5, 3), (6, 4), (7, 5), (8, 6), (9, 7)
5 1 0.0209 8845 0.0017 1292 (10, 6)

2 0.0254 7688 −0.0000 6956 (6, 3), (7, 4), (8, 5), (9, 6)
6 1 0.0127 0974 0.0012 9559 (10, 5)

2 0.0139 6326 −0.0000 4080 (7, 3), (8, 4), (9, 5)
7 1 0.0081 8968 0.0010 0903 (10, 4)

2 0.0082 9530 −0.0000 2611 (8, 3), (9, 4)
8 1 0.0055 4906 0.0008 0543 (10, 3)

2 0.0052 5835 −0.0000 1758 (9, 3)
9 1 0.0039 1725 0.0006 5636 (10, 2)

2 0.0035 1345 −0.0000 1229
10 1 0.0046 3344 −0.1104 4104

and

S = 4πr2{1 + (n − 1) · cos η}. (B.3)

Because the corresponding specific surface area to the
JBC, So, is

So = S(η = 0) = (3/ρr ), (B.4)

the contraction factor from So to S as is defined in the
text, f , is estimated by

f = S(η)/So = {1 + (n − 1) · cos η}/
× {1 + (n − 1) · cos η · (1 + sin 2η/2)}, (B.5)

from which the necking factor, p is calculated as

p = 3(n/(n − 1)) · (1 − f ). (B.6)

An experimental method which estimates the values of
p and η is as follows. Basically, because R can be ex-
perimentally evaluated from the grain size by the wide
angle X-ray diffraction profile and/or from direct ob-
servation based on a transmission electron microscope
(TEM) image, and ρ can be experimentally evaluated
by a pycnometry, then it is possible to experimentally
estimate So from Equation B.4. Therefore, combined
with an experimental S value, as evaluated for example
by an N2 adsorption method, it is possible to use Equa-
tion B.5 to estimate f . Then, p and η can be obtained
from Equations B.6 and B.5 if n can be assumed to be
the aspect ratio of the particle, this can be estimated
from the TEM image.

Appendix C: Numerical values of {P s, Q s} and
{P m, Q m} for Ishii-Sato’s chain where n = 10
Table A.I shows the morphological parameters and
{Ps, Qs} as a function of η, whereas {Pm, Qm} as a
function of η is shown in Table A.II. fl/ lo in Table A.I

is a contraction factor from a JBC to ISC with respect
to the axial length.

Appendix D: Hc as a function of the aspect
ratio and intergrain necking
The calculations of Hn and Hc as a function of θo and p
were also carried out for the ISC where n = 3, 4 and 5.
As is partly indicated by Appendix C, changing the the
number of the spheres and the necking angle simulta-
neously leads to a varying effective aspect ratio (that

Figure A1 IComparison of the directly calculated values and the
regression-based prediction of Hc for an ISC where n = 2, 3, 4 and
10, in the symmetric fanning mode.
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is defined as the effective length of the chain divided
by the effective diameter) and necking factor. There-
fore, in order to obtain the “pure” intersphere necking
effect on the magnetization reversal, a regression anal-
ysis was necessary. As one of the results, the following
formula was heuristically obtained having an accuracy
of the multiple correlation coefficient of 99.4% for the
dependence of Hc on the effective aspect ratio and the
intersphere necking of the ISC aligned along the exter-
nal field in the symmetric fanning mode:

Hc in µ/a3 = α · [1 − exp{−β((L/D) − 1)}]
· {1 + (a − b · p) · p},

where α = 2.5231, β = 0.4652; a = 1.3742 and b =
1.5703.

Fig. A.I. demonstrates the accuracy of the above for-
mula. By applying this regression formula, the pure
effect of the intersphere necking on Hc for an ISC with
normalized morphology as characterized by the effec-
tive aspect ratio, can be obtained.
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